Nonlinear robust optimization via sequential convex bilevel programming

نویسندگان

  • Boris Houska
  • Moritz Diehl
چکیده

In this paper, we present a novel sequential convex bilevel programming algorithm for the numerical solution of structured nonlinear min–max problemswhich arise in the context of semi-infinite programming. Here, our main motivation are nonlinear inequality constrained robust optimization problems. In the first part of the paper, we propose a conservative approximation strategy for such nonlinear and nonconvex robust optimization problems: under the assumption that an upper bound for the curvature of the inequality constraints with respect to the uncertainty is given, we show how to formulate a lower-level concave min–max problem which approximates the robust counterpart in a conservative way. This approximation turns out to be exact in some relevant special cases and can be proven to be less conservative than existing approximation techniques that are based on linearization with respect to the uncertainties. In the second part of the paper, we review existing theory on optimality conditions for nonlinear lower-level concave min–max problems which arise in the context of semi-infinite programming. Regarding the optimality conditions for the concave lower level maximization problems as a constraint of the upper level minimization problem, we end up with a structured mathematical program with complementarity constraints (MPCC). The special hierarchical structure of this MPCC can be exploited in a novel sequential convex bilevel programming algorithm. We discuss the surprisingly strong global and locally quadratic convergence properties of this method, which can in this form neither be obtained with existing SQP methods nor with interior point relaxation techniques for general MPCCs. Finally, we discuss the application fields and B. Houska (B)· M. Diehl Optimization in Engineering Center (OPTEC), K. U. Leuven, Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium e-mail: [email protected] M. Diehl e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Optimization of Dynamic Systems

This thesis is about robust optimization, a class of mathematical optimization problems which arise frequently in engineering applications, where unknown process parameters and unpredictable external influences are present. Especially, if the uncertainty enters via a nonlinear differential equation, the associated robust counterpart problems are challenging to solve. The aim of this thesis is t...

متن کامل

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

Combinatorial Structures in Nonlinear Programming

Non-smoothness and non-convexity in optimization problems often arise because a combinatorial structure is imposed on smooth or convex data. The combinatorial aspect can be explicit, e.g. through the use of ”max”, ”min”, or ”if” statements in a model, or implicit as in the case of bilevel optimization where the combinatorial structure arises from the possible choices of active constraints in th...

متن کامل

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

Global optimization of mixed-integer bilevel programming problems

Global optimization of mixed-integer nonlinear bilevel optimization problems is addressed using a novel technique. For problems where integer variables participate in both inner and outer problems, the outer level may involve general mixed-integer nonlinear functions. The inner level may involve functions that are mixed-integer nonlinear in outer variables, linear, polynomial, or multilinear in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2013